

Algoritmos quânticos no setor financeiro

Venturus

José Erinaldo da Fonsêca

UFSJ: Graduação e Mestrado em Física

UnB: Doutorado em Física

Univesity of Leeds/UK:

Pós Doutorado Química Computacional

Unicamp:

Pós Doutorado em Computação Quântica

Agenda

Sobre nós!

O que é a computação quântica?

Como são os computadores quânticos?

Como são os algoritmos quânticos?

O que fazer com um computador quântico?

O que fazemos no Venturus?

Oportunidades!

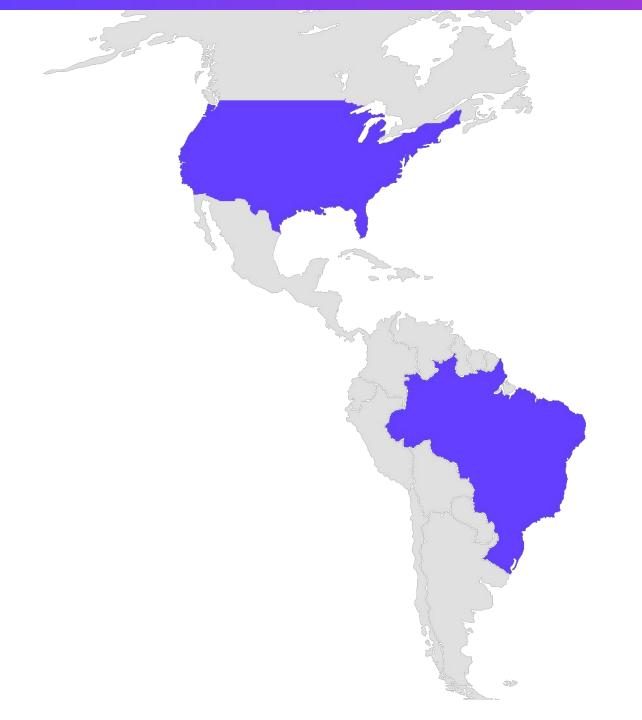
Venturus

Sobre nós

Fundado em 1995

Uma das maiores instituições de PD&I e foco em produtos no Brasil, com cerca de 250 projetos nos últimos 5 anos

Mais de 800 colaboradores


Estamos no Polo de Alta Tecnologia de Campinas/SP

Nós ouvimos, duvidamos, pesquisamos, criamos e desenvolvemos muito mais do que soluções práticas para problemas óbvios.

Nós desenvolvemos o

FUTURO

USA

Atlanta, GA

BRASIL

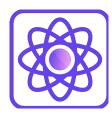
Manaus, AM

BRASIL (Headquarter)

Campinas, SP

BRASIL (CUBO)

São Paulo, SP


Linhas de Pesquisa

Inteligência Artificial

Visão computacional

IA Generativa

Computação Quântica

Estudos de algoritmos

PQC

Otimização Quântica

Blockchain

Qualidade de contratos inteligentes

Tokenização

Criptomoedas

O que é computação quântica?

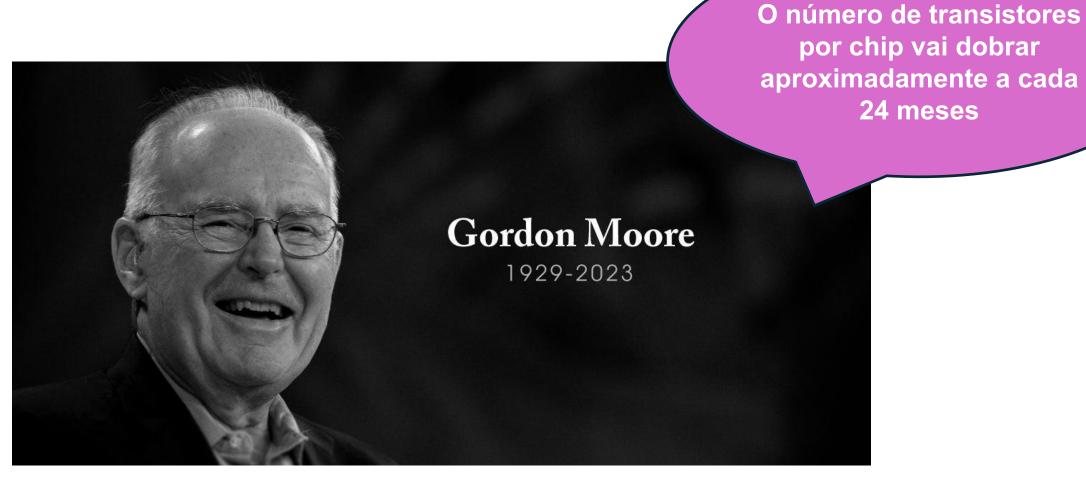
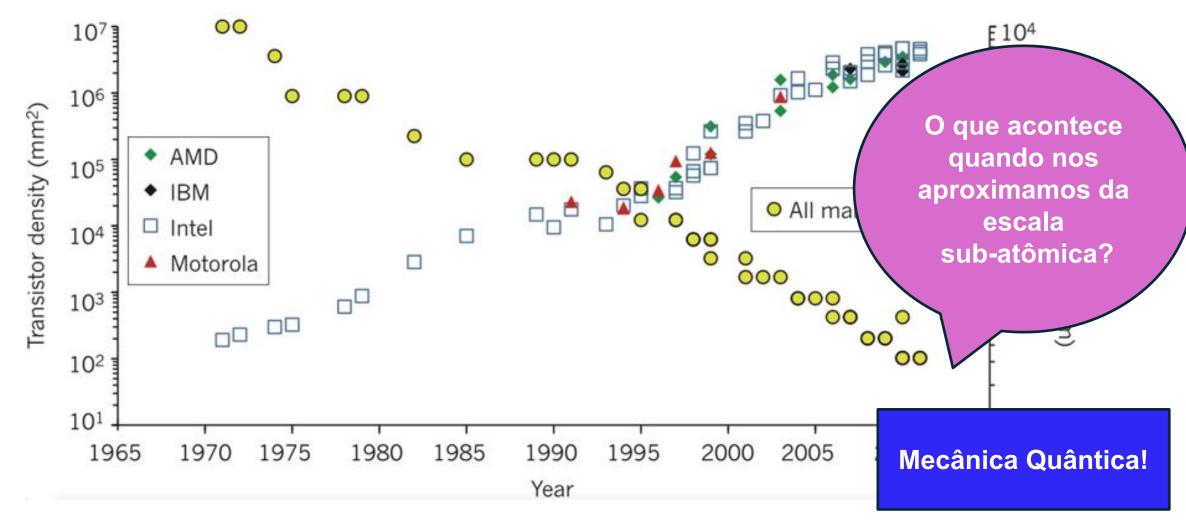



Imagem de https://www.gatesnotes.com/Remembering-Gordon-Moore

Lei de Moore

A física quântica

Mecânica clássica: funciona muito bem para descrever sistemas macroscópios.

Entretanto... quando consideramos dimensões muito pequenas ou velocidades muito próximas à da luz... falha!

Velocidades muito altas: Teoria da Relatividade

Partículas muito pequenas: Mecânica Quântica!

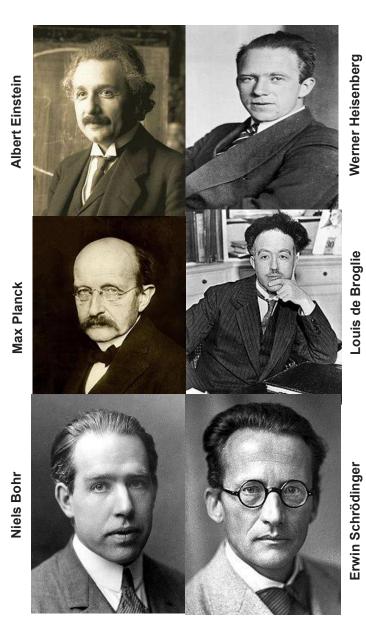


Imagem de wikipedia

A física quântica

Podemos resumir a mecânica quântica em **postulados**:

Postulado do Estado Quântico: O estado do sistema quântico é descrito por $|\psi\rangle$.

Postulado da Evolução Temporal: O sistema quântico é governado pela equação de Schrödinger.

Postulado da Medida: Após a medição, o estado do sistema colapsa para o estado correspondente ao valor próprio medido.

Postulado da Superposição: Se $|\psi_1\rangle$ e $|\psi_2\rangle$ são estados possíveis de um sistema quântico, qualquer combinação linear a $|\psi_1\rangle$ + b $|\psi_2\rangle$, onde a e b são números complexos, também é um estado possível do sistema.

A física quântica

Postulado do Emaranhamento: Estados quânticos de sistemas compostos podem ser emaranhados, o que significa que o estado de uma parte do sistema não pode ser descrito independentemente do estado do restante do sistema.

Esses postulados formam a base teórica sobre a qual se desenvolvem os algoritmos de computação quântica.

Física e Computadores

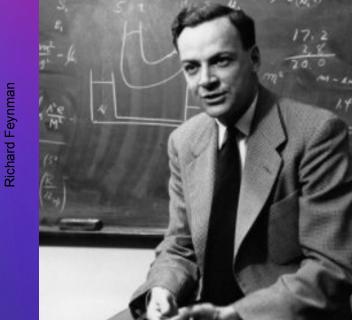


Imagem de clube.spm.pt

Palestra: "Simulating Physics with Computers" Conferência no MIT em 1981.

Os nossos computadores são eficientes para simular Mecânica Quântica?

E se o computador for construído usando a própria Mecânica Quântica?

Grande desafio tecnológico...

Difícil isolar e manipular muitas partículas quânticas por tempo suficiente...

PORÉM, grandes avanços recentes!

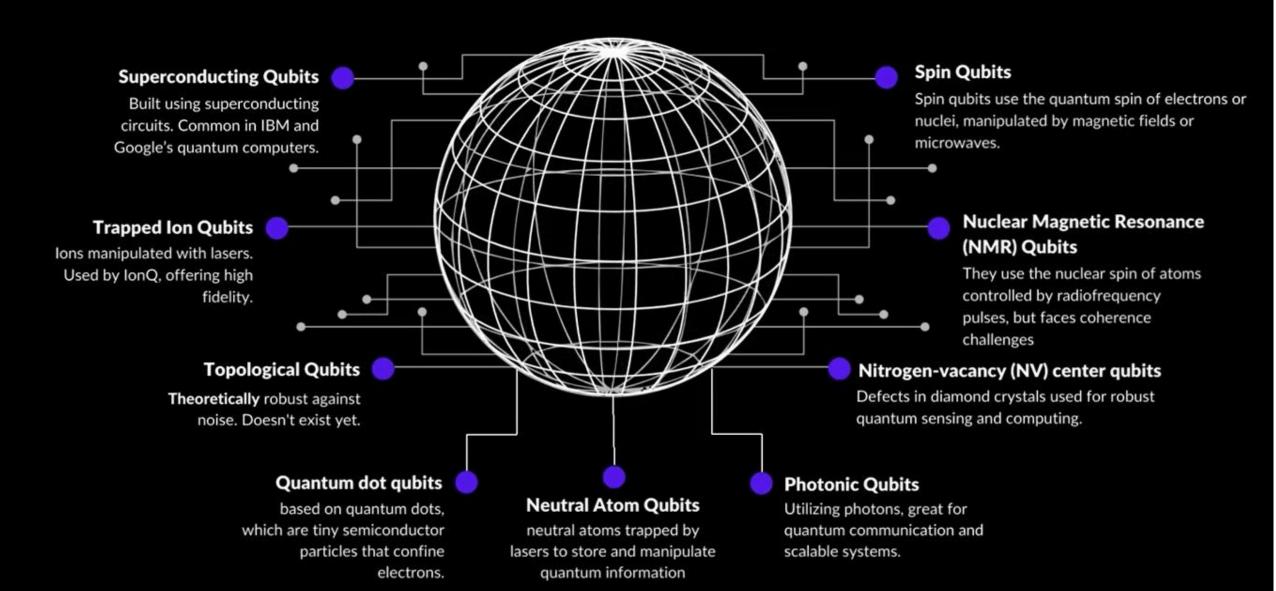
Computadores Quânticos de Porta (Gate-Based Quantum Computers):

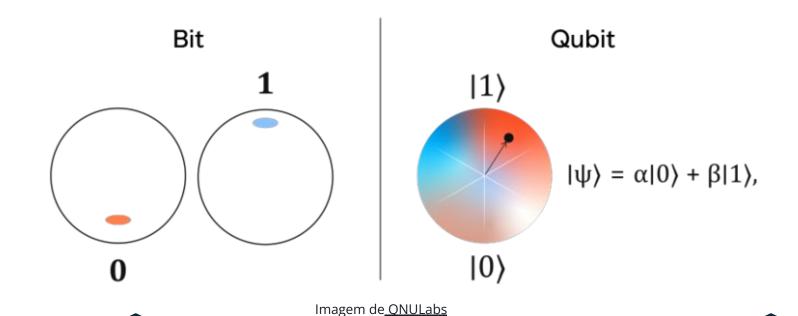
Exemplos: Google Sycamore, IBM Q, Rigetti.

Computadores Quânticos Adiabáticos (Adiabatic Quantum Computers):

Exemplos: D-Wave Systems.

Computadores Quânticos de Recorrência (Quantum Annealers):


Exemplos: D-Wave Systems.


Computadores Quânticos Topológicos (Topological Quantum Computers):

Exemplos: Pesquisas da Microsoft e outras instituições.

Apesar dos avanços, todos enfrentam desafios

Type's of Qubit

- * Unidade básica de informação na computação clássica.
- * Pode estar em um de dois estados discretos: 0 ou 1.

- * Unidade básica de informação na computação quântica
- * Pode estar em uma superposição de 0 e 1 simultaneamente.

$$|\psi\rangle = \cos\left(\frac{\theta}{2}\right)|0\rangle + e^{i\phi} \operatorname{sen}\left(\frac{\theta}{2}\right)|1\rangle$$

Número complexo! Parte real e parte imaginária! Pode até ser negativo!

Superposição

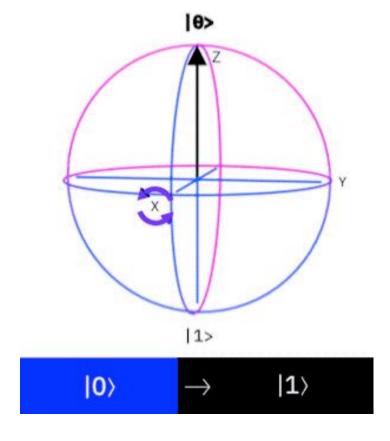


Imagem de <u>IBM</u>

Quem nunca ouviu falar no Gato de Schroedinger?

Imagem de https://www.belasartes.ulisboa.pt/o-gato-de-schrodinger/

Como são os algoritmos quânticos?

Os **algoritmos quânticos** são representados por **circuitos quânticos**.

Qubits são representados por linhas horizontais.

As **portas lógicas quânticas** são representadas por blocos, símbolos e linhas verticais.

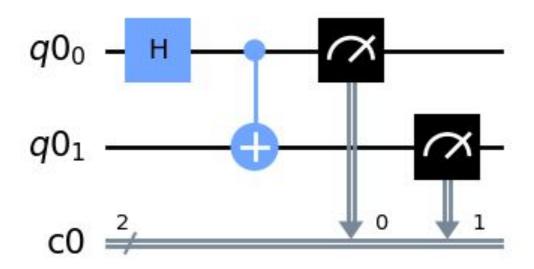
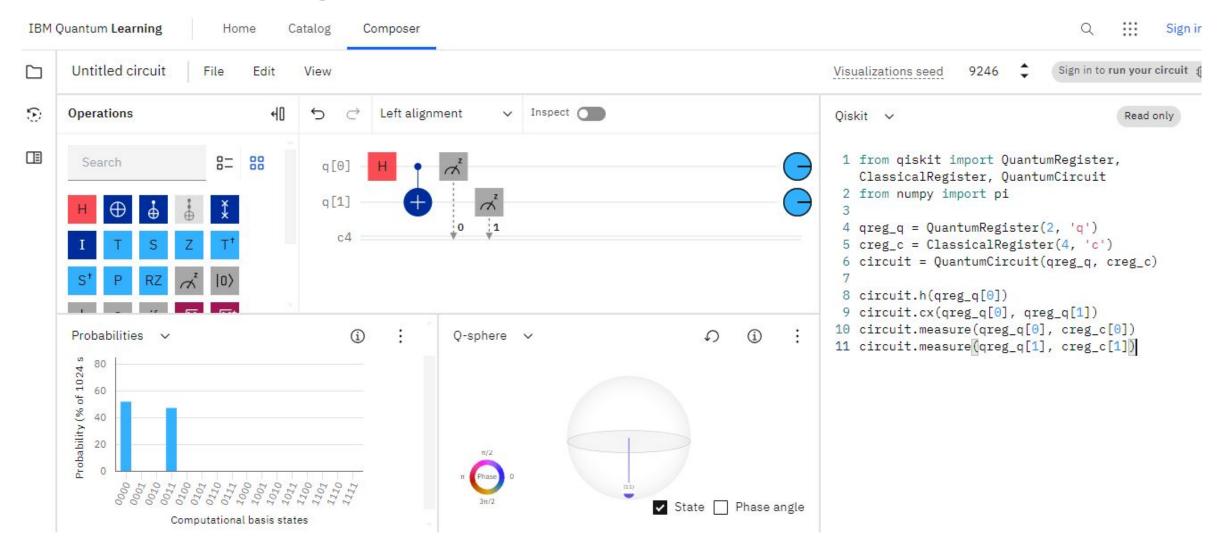



Imagem de F. C. Ferraz por Medium

Como são os algoritmos quânticos?

Como são os algoritmos quânticos?

Os algoritmos mais famosos:

- Shor, fatoração de inteiros, 1994
- Grover, busca não-ordenada, 1996
- Algoritmo adiabático, 2000
- HHL, sistemas lineares, 2008
- QAOA, otimização, 2014

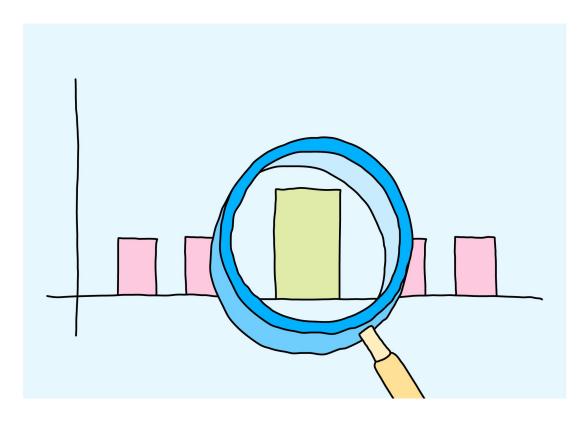


Imagem de Pennylane

O que fazer com um computador quântico?

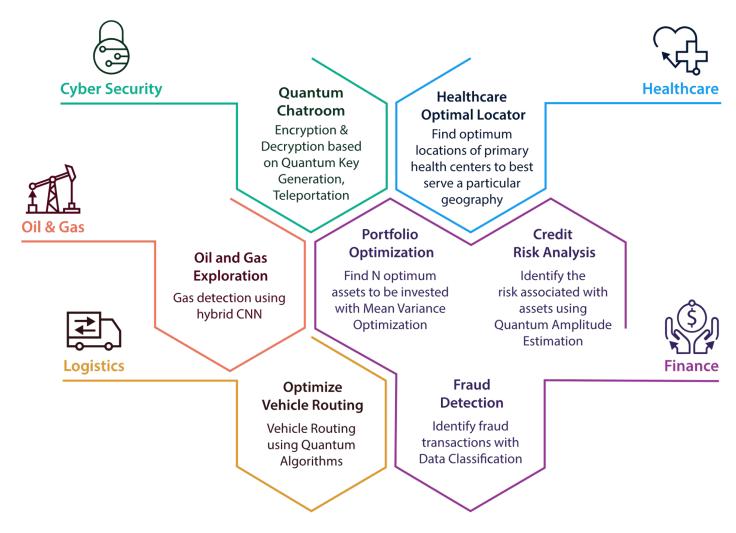


Imagem de https://www.infosys.com/services/incubating-emerging-technologies/offerings/guantum-computing.html

O que fazer com um computador quântico?

O grande objetivo da **química quântica** é prever as propriedades químicas e físicas das moléculas com base exclusivamente no arranjo dos seus átomos

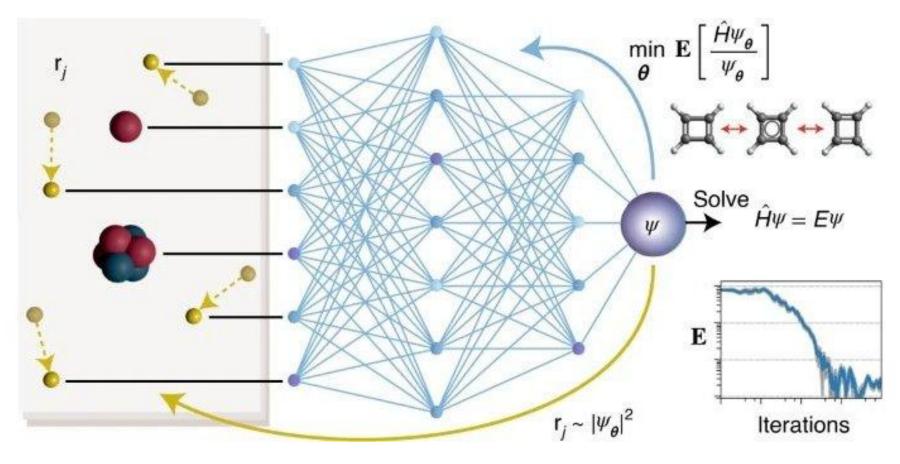
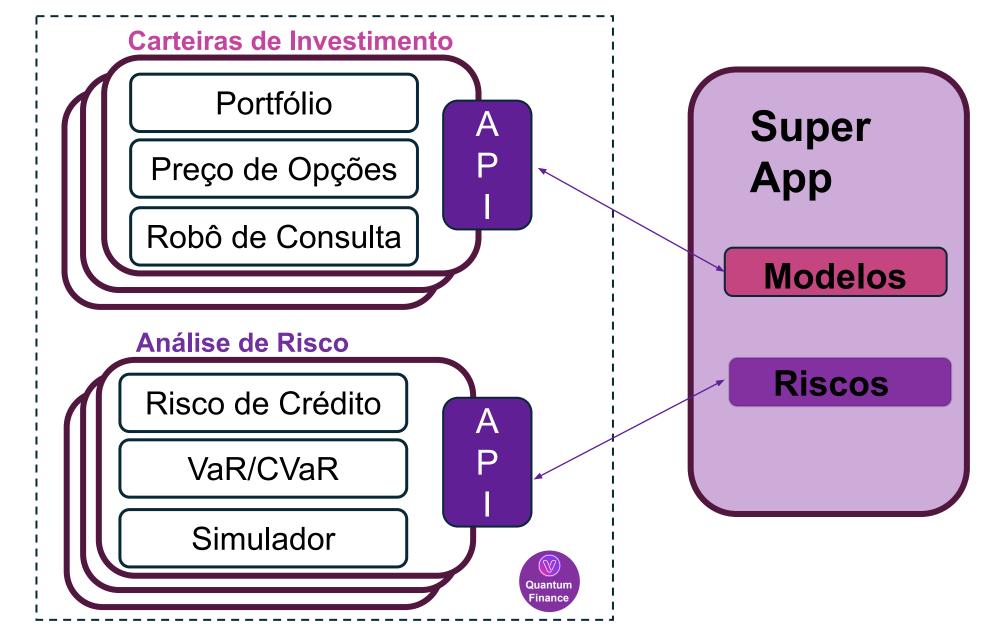


Imagem de https://www.inovacaotecnologica.com.br/noticias/noticia.php?artigo=moleculas-qubits-melhores-atomos&id=010110170802

O que fazemos no Venturus?

Otimização Quântica

Simulação usando Algoritmos Quânticos

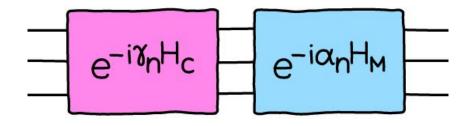


Venturus Quantum Finance

Plataforma de Serviços do Venturus para modelagem financeira baseada em computação quântica que traz para o mercado as mais inovadoras soluções do mundo da pesquisa e do desenvolvimento.

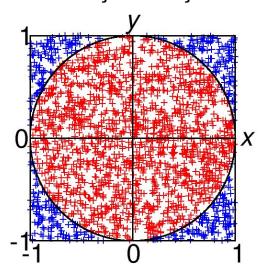
Através de uma parceria estratégica com a Microsoft Azure, trazemos excelência e inovação contínua ao seu negócio.

Visão Geral



Visão Geral Módulo Python (C++/Rust/...) Módulo Python Divulgação em Análise e dashboard Modelos Multifatorados Definição de Avaliação de Risco padrão do Azure **Azure** metadado Azure Cloud Analysis Cloud Algorithm Web Hosting **Azure Azure Azure** Cloud based Data **Datasets** Data Quantum transfer Quantum Analysis iniciais **Processing** Algorithm Azure Datasets tratados de Entrada de **Modelos Riscos** acordo com Datasets de metadado parceiros padronizado Azure **Azure Finance Services**

Visão Geral


Use Case	Portfolio optimisation	Transaction settlement	Predicting financial crashes	Estimating risk measure(s)	Derivative pricing	
Methodology	Optimisation		Monte Carlo	Ma	chine learning	
Quantum algorithm	Approximate Optimization (VQE QAOA, QUBO)			inear equation (HHL, qPCA)	earching and counting (QAE, QPA, QPE)	
Hardware	Quantum annealer			Gate-based quantum computer		

Otimização de Portifólio Liquidação de transação Previsão de Crises Financeiras

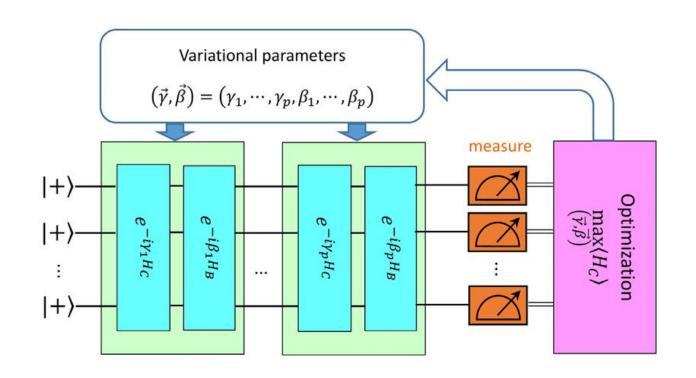
Quantum Approximate Optimization Algorithm - QAOA Variational Quantum Eigensolver - VQE

Análises de Riscos Precificação de Ações

Quantum Monte Carlo - QMC QAE, QPE, QFT

Quantum Approximate Optimization Algorithm - (QAOA)

Projetado para resolver problemas de otimização combinatória.


Em finanças, a **Otimização de Portfólio** envolve encontrar a melhor combinação de ativos (ações, títulos, etc.)

Maximizar o retorno esperado do portfólio.

Minimizar o risco (tipicamente medido pela variância ou covariância dos ativos).

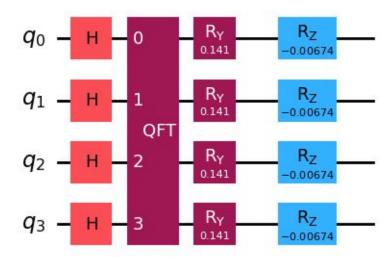
Respeitar restrições como o peso de cada ativo no portfólio.

- 1 Definição do Problema (QUBO)
- 2 Estado Inicial do QAOA
- 3 Operadores do QAOA (Custo e Mistura)
- 4 Otimização Clássica de Parâmetros
- 5 Medida e Seleção da Melhor Solução

Quantum Monte Carlo - QMC

É uma **metodologia** que aproveita a **mecânica quântica** para simular sistemas complexos e estimar possíveis resultados de um evento incerto, como a precificação de ativos financeiros.

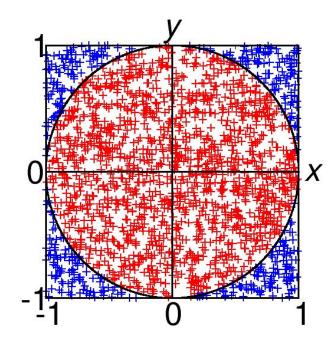
No contexto da **precificação de ações**, o QMC pode ser utilizado para simular o comportamento futuro dos preços de ativos e calcular o valor justo de uma ação ou derivativo.


$$S_t = S_{t-1} * e^{\left(\left(\mu - \frac{1}{2}\sigma^2\right) + \sigma Z[Rand(0;1)]\right)}$$

Simulação de Precificação de Ação

Quantum Monte Carlo - QMC

- 1 Cria o estado quântico
- 2 Configura o circuito quântico
- 3 Aplica QFT para simular a evolução do preço.
- 4 Aplica rotações controladas para simular o movimento browniano em um circuito quântico.
- 5 Define o problema de estimativa (Estimativa de amplitude)
- 6 Usa o Operador de Grover para amplificação de amplitude
- 7 Usa a Estimativa de Amplitude para medir



Quantum Monte Carlo - QMC

Eficiência: Os métodos Monte Carlo convencionais dependem de amostragem aleatória para calcular valores médios, e isso pode ser computacionalmente caro para problemas de alta dimensionalidade. O QMC pode melhorar a eficiência ao usar algoritmos quânticos que podem gerar distribuições de probabilidade de maneira mais rápida.

Paralelismo Quântico: O QMC aproveita o paralelismo inerente à computação quântica, acelerando a convergência para uma solução exata em certos cenários.

Maior Precisão: A superposição e o emaranhamento permitem explorar diferentes caminhos de evolução de preço de uma ação simultaneamente, levando a resultados mais precisos.

API:

- Cria uma interface para os modelos desenvolvidos
- Várias organizações podem se beneficiar dos estudos já desenvolvidos
- É possível fazer comparações entre os métodos
- Acesso ao Otimizador de Portfolio
 - Clássico
 - Quântico
- Acesso às Simulações de Monte Carlo
- Adicione seus próprios modelos à API

API

Venturus Quantum Finance OAS 3.1

/openapi.json

Quantum kernel methods to finance sector

Venturus Quantum Finance API offers the best methods in finance with quantum approach. Let's Rock!

Option Price Monte Carlo

The Monte Carlo Method is a mathematical technique used to estimate the possible outcomes of an uncertain event. It was invented during World War II and was named after a well-known casino city called Monaco, as chance is the main element of the modeling approach, similar to a game of roulette. QMC is the Quantum Monte Carlo method based on quantum algorithms.

$$S_t = S_{t-1} * e^{\left(\left(\mu - \frac{1}{2}\sigma^2\right) + \sigma Z[Rand(0;1)]\right)}$$

Acceptable parameters:

Stock Symbol: Ex: CPFE3.SA

Legend: QAE means Quantum Amplitude Estimation Algorithm that estimates the amplitude (probability) of a particular outcome in a quantum state. QPE means Quantum Phase Estimation Algorithm that is used to estimate the eigenvalue (phase) associated with an eigenstate of a unitary operator.

Porfolio Optimizer

formal mathematical approach to making investment decisions across a collection of financial instruments or assets. Portfolios are points from a feasible set of assets that constitute an asset universe.

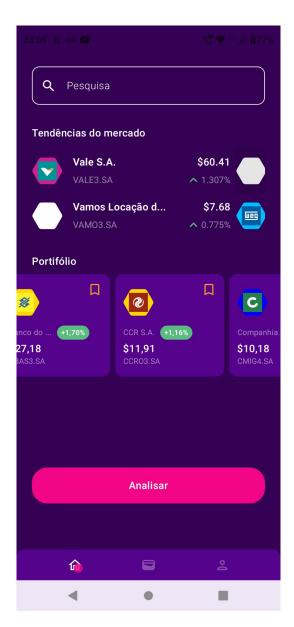
Acceptable parameters:

Stock List: json array of selected stocks. Ex: { "stock": "['CPFE3.SA', 'ELET3.SA', 'ELET6.SA', 'HYPE3.SA', 'LOGN3.SA', 'SLCE3.SA']", "date": "06-06-2024" }

Legend:

QAOA means Quantum Approximate Optimization Algorithm. Hybrid iterative method for solving combinatorial optimization problems.

VQE means Variational Quantum Eigensolver. Quantum algorithm for quantum chemistry, quantum simulations and optimization problems




Option Price Monte Carlo mathematical technique used to estimate the possible outcomes of an uncertain event.	Venturus Quantum Finance	~
Portfolio Optimizer formal mathematical approach to making investment decisions across a collection of financial instruments or assets. Portfolios are points from a feasible set of assets that constitute an asset universe.	Venturus Quantum Finance	^
/portfolio/optimizer/quantum Quantum Portfolio Optimizer		~
/portfolio/optimizer/classic Classic Portfolio Optimizer		~
POST /portfolio/optimizer Portfolio Optimizer		~
default		^
GET / Default		~
Stocks		^
GET /stocks Stocks		~
GET /stock/{stock_symbol} Stock		~
GET /stocks/icons Get Stock Icons		~
GET /montecarlo/symbol/{symbol} Getmontecarlo		~

Aplicativo:

- Validar a API
- Demonstrar potencialidades
- Teste de desempenho
- Teste de uso

APLICATIVO

EM RESUMO

- Muitos algoritmos quânticos tem sido usado no mercado financeiro.
- Uma nova forma de comparar algoritmos.
- Disponibiliza o acesso de fintechs à algoritmos quânticos.
- Diminuição do tempo de adoção de novas técnicas.
- Acelera o ecossistema financeiro.
- Aplicação real.

VANTAGENS

Velocidade de Processamento:

Exponencialmente mais rápido do que os algoritmos clássicos conhecidos.

Simulação de Sistemas Quânticos:

É intrinsecamente adequada para simular sistemas quânticos, como moléculas.

Paralelismo Intrínseco:

A superposição permite que um computador quântico explore múltiplos estados simultaneamente.

Emaranhamento:

Usado para criar correlações quânticas que são úteis em algoritmos quânticos e comunicação quântica.

DESVANTAGENS

Fragilidade e Decoerência:

Os qubits são extremamente sensíveis ao ambiente, levando a erros de decoerência e perda de informação.

Correção de Erros Quânticos:

A correção de erros quânticos é muito mais complexa. Muitos qubits físicos = um único qubit lógico estável.

Escalabilidade:

A construção de computadores quânticos com um número grande e estável de qubits ainda é um desafio.

Complexidade de Implementação:

Algoritmos quânticos requer compreensão profunda de física quântica e engenharia avançada.

Interferência Ambiental:

Qubits facilmente afetados, exigindo ambientes de operação altamente controlados.

Obrigado!

José Erinaldo da Fonsêca
Quantum Computing Research
erinaldo.fonseca@venturus.org.br
Erinaldo Fonseca | Linkedin